
Image compression using Generalized Low Rank
Approximation of Matrices

Rishu Saxena
Computer Science Department

Virginia Tech
Blacksburg, VA

rishus@vt.edu

ABSTRACT
Image processing scientists and associated domain scientists
are striving to accomodate the dulge of data that has come
about in the past decade thanks to rapid advancements of
technology as well wider availability of data. The data dulge,
the wide gamut of utilities and increasingly multidimen-
sional nature of modern images has created an impending
need for more efficient storage and processing mechanisms
for images and has encouraged much research in the direc-
tion. The goal here is to achieve data compression without
compromising on the quality of images.

In this project, we study the use of generalized low rank
approximations of matrices for image compression. This ap-
proach was proposed in [6] in 2005. Low rank approxima-
tions of single matrices have been used very successfully for
various purposes. In this paper, the author generalizes the
approach to multiple matrices, thus adapting the approach
for analyzing datasets of images (rather than having to pro-
cess one image at a time). We run our experiments on a fa-
cial data dataset that was used by the author as well as on a
remote sensing dataset. Significant compression is achieved.
Comparison between The results of reconstruction and clas-
sification obtained from generalized low rank approximation
approach and the results obtained using SVD is also pre-
sented; the recontructions with the current approach are
much better. The proposed approach also achieves much
better time complexity. Since remote sensing datasets, in
particular, are plagued by massive amounts of missing data,
such methods of compression can be particularly useful to
them.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Miscella-
neous

General Terms
Application

Keywords
Low rank approximation, classification, Singular Value De-
composition (SVD), time-series.

1. INTRODUCTION (PAPER SUMMARY)
Low rank approximation is a minimization problem that
seeks to minimize the fit between a given matrix (the data)
and an approximating matrix subject to the condition that
the approximating matrix has a lower rank than the original
(given) matrix. Mathematically, the general idea is to solve
the following problem:

min ‖A− Â‖, (1)

such that

rank(Â) ≤ k, (2)

where k is the desired rank. Low rank approximations find
application in several domains such as machine learning,
recommender systems, natural language processing, image
processing and the like. The problem is well studied by
researchers from various communities and several strategies
for computing low rank approximations have been proposed.
Traditionally, is singular value decomposition (SVD) has
been the most popular mthod of choice for computing low
rank approximations. Other popular algorithms availabale
today include: Alternating projections algorithm [1], Vari-
able projections algorithm [4], CUR matrix approximation
[5], and the like. However, all of these algorithms are de-
signed for single matrices. To process a dataset such as a
collection of matrices, these algorithms wrap the individual
images (say, of size r×c) into vectors (say, of size rc×1) stack
together these vectors into columns of a matrix (so each col-
umn corresponds to one image) and implement the avail-
able algorithm on this large image. Unfortunately, as the
datasets get bigger (due to increase in size of image datasets
as well as increasingly multidimensional nature of images)
this approach and the traditional algorithms lose scalabil-
ity. This is a tremendous drawback in the current era of Big
Data and when most images are multidimensional. Remote
sensing datasets, for example, are already of the size of ter-
abytes and are expected to grow to petabytes in the coming
few years. Before this paper was published, some other in-
cremental algorithms had also been proposed [2, 3] but these
algorithms did not guarantee the much needed attributes of
stability, convergence and the like.

The paper we discuss here was published in 2005. It pro-
posed a novel iterative algorithm for low rank approxima-
tions of a sequence of matrices, which, as we will show in the



paper, achieves remarkable data compression. The spatial
and temporal efficiency achieved in the proposed algorithm
is still better than that of any of the other state-of-the-art
approaches, including the ones mentioned earlier. This pa-
per, thereofore, is of significant interest. Broadly, the al-
gorithm presented in the paper it is designed to work di-
rectly on a sequence of images (and thus, altogether avoids
the need for building the large matrix mentioned earlier).
Secondly, it demostrated more accurate results in data com-
pression, image retrieval and image classification. Finally,
it’s time complexity is much less than that of traditional
algorithms.

The authors make a quick summary on SVD as they observ-
ing a theorem on SVD:

Theorem 1. Let the Singular Value Decomposition of A ∈
RN×n be A = UDV t, where U and V are orthogonal matri-
ces and D = diag(σ1, . . . , σr, 0 . . . , 0), σ ≥ . . . , σr > 0 and

r = rank(A). Then for 1 ≤ k ≤ r,
r∑

i=k+1

σ2
i = min{‖A −

B‖2F : rank(B) = k}. The minimum is achieved with B =
bestk(A), where bestk(A) = Ukdiag(σ1, . . . , σk)V t

k are the
matrices formed by the first k columns of U and V, respec-
tively.

To construct the main algorithm, mathematical formula-
tions and manipulations are vividly discussed. The authors
go on to prove three different theorems:

Theorem 2. Let L,R and {Di}ni=1 be the optimal solu-
tion to the minimization problem in Eq. (1). Then Di =
LtAiR, for every i.

Meaning, once L and R are determined, Di is uniquely de-
termined by Di = LtAiR.

Theorem 3. Let L,R and {Di}ni=1 be the optimal solu-
tion to the minimization problem in Eq. (1). Then L and
R solve the following optimization problem:

max

n∑
i=1

‖LtAiR‖ (3)

where, L ∈ Rr×l1 , R ∈ Rc×l2 and L and R have orthogonor-
mal column vectors, i.e., LtL = Il1 and RtR = Il2 .

Theorem 4. Let L,R and {Di}ni=1 be the optimal solu-
tion to the minimization problem in Eq. (1). Then

1. For a given R, L consists of the l1 eigenvectors of the

matrix Ml =
n∑

i=1

AiRR
tAt

i corresponding to the largest

l1 eigenvalues.

2. For a given L,R consists of the l2 eigenvectors of the

matrix MR =
n∑

i=1

At
iLL

tAi corresponding to the largest

l2 eigenvalues.

Theorem 4 is the main theorem that helps us build an iter-
ative method for computing L and R. Basically, for a given
L, we can compute R by computing the eigenvectors of the
matrix MR. With the computed R, we can then update L
by computing the eigenvectors of the matrix ML. The pro-
cedure can be repeated until convergence. The pseudocode
presented in the paper is displayed in algorithm 1 (with some
minor details additionally included)

Algorithm 1 GLRA({Ai}ni=1)

1: Initialize L
2: Assign the error tolerance for convergence τ.
3: while ε > τ do

4: Compute MR =
n∑

j=1

At
jLL

tAj .

5: Compute the eigenvectors {φR
i })ni=1 of MR corre-

sponding to the l2 largest eigenvalues.
6: R← [φR

1 , . . . , φ
R
l2

]

7: Form the matrix ML =
n∑

j=1

At
jRR

tAj .

8: Compute the eigenvectors {φL
i })ni=1 corresponding to

the l1 largest eigenvalues of ML.
9: Lnew ← [φL

1 , . . . , φ
L
n ]

10: ε = ‖Lnew − L‖F
11: L = Lnew

12: end while
13: for j = 1 : n do
14: Dj = LtAjR.
15: end for

Convergence and accuracy:. By theorem 4, the updates

in lines 6 and 9 of algorithm 1 increases the value of
n∑

i=1

‖LA
i R‖2F .

Therefore, by theorem 3, it is straightforward to conclude
that the root mean square error in recostruction using Frobe-
nius norm, given as

RMSRE =

√√√√ 1

n

n∑
i=1

‖Ai − LDiRt‖2F (4)

also decreases. Since, by formula itself, RMSRE is bounded
from below by 0, the algorithm is guarantedd to converge.

Complexity:. The time complexity of the algorithm isO(µ(r+

c)2 max(l1, l2)n), where µ is the number of iterations in the
while loop.

The space complexity can be calculated to be O(rc).

The details of these calculations are presented by the authors
in the paper.

2. EXPERIMENTS
I implemented the proposed algorithm in python. For the
proposed algorithm itself, the only packages I needed were
os, numpy, and re. The implementation was straightforward.
The results if the proposed algorithm were compared with
those of the popular SVD approach. For SVD calculations,



I used the inbuilt commands from linalg package of python.
All the experiments were carried out on a Lenovo-ThinkPad,
x86, 64-bit 4-core laptop with 8GB memory and 2GHz CPU.
All the results shown here use d = 20.

2.1 Datasets
I ran the code on the ORL and other datasets discussed in
the paper first. Results for ORL dataset are presented in the
subsections to follow. ORL dataset is a freely available face
recognition dataset containing pictures of 40 subjects, ten
pictures per subject (so, 400 pictures in all). Subsequently,
I also experimented with a few other datasets. Two of those
are discussed in this presentation.

First was a leaves dataset available freely a computer vi-
sion group at Caltech (http://www.vision.caltech.edu/html-
files/archive.html). This dataset consists of 186 images of
leaves of three different species. Each image is 896 x 592
pixels in jpg format.

The second dataset is the Menu-Match dataset, available on
the website of a visions group at UCSD (http://vision.ucsd.edu/content/menu-
match-dataset). The Menu-Match dataset include images of
meals from three restaurants: an Asian restaurant offers a
buffet-style setup where customers select 1-3 toppings that
are served with a fixed serving size on top of brown or white
rice; an Italian restaurant offers a variety of pizzas, lasag-
nas, and pastas, served with sides of breadsticks or salad;
and a soup restaurant offers 10 soups with a side of one of
5 breads. For this dataset, we had the choice of how many
classes we want to work with. For example, we could have
done classification of images to precisely pin-point the indi-
vidual menu item it belonged to; that would have lead to 41
classes. However, for this presentation, we decided to adhere
to classify a food-image in terms of the cuisine it belonged
to. So we were working with only three classes, each class
corresponded to one cuisine. Relevant details of the datasets
are presented in table 1.

Dataset size image size # classes
Face 400 10304 40

Leaves 186 530432 3
originally varied

Menu 646 but cropped to 512 3
512× 512 =

Table 1: Datasets presented in this report.

2.2 Performance
That the algorithm certainly brings improved time complex-
ity is demostrated in figure 1. For ORL dataset, the matri-
ces L,D and R were computed in less than one second (≈
0.64741 second, specifically). Figure 1 compares the time
taken by the proposed algorithm with the time taken by
SVD to process each of the three input datasets. For Leaves
and Lenu-Match datasets, SVD resulted in segmentation
fault on my computer because of it’s memory requirements.
(For presentaion sake, the SVD times have been displayed
as 130 seconds, a placeholder number.) The proposed algo-
rithm, on the other hand, ran without any difficulty, hence
proving that it not only runs faster than SVD but it also

requires lesser memory than SVD. Using d = 20, the algo-
rithm achieved compression ratios of about 25% for the ORL
dataset and and 30% for the Leaves and the Menu-Match
datasets.

Figure 1: Time take for the proposed algorithm to
run on the three datasets compared to the time take
by SVD. SVD times are (displayed as 130 seconds
here) but in reality, SVD never finished running for
the Leaves and Menu datasets on my computer due
to memory constraints.

Effect of value of d.. The accuracy of classification varies
with the parameter d. Some results are shown in figure 2. Of
the calues we experimented with (also based on the original
paper), d = 20 seems to be working best on all the three
datasets we use in this writ-up. Therefore, all the experi-
ments from here on are presented using this value.

Figure 2: Accuracy of classification as a function of
the parameter d when the compressed images are
used.

2.3 Classification
The compressed images obtained using the proposed ap-
proach were used as inputs to a K-nearest neighbor classifier
for classification and the accuracy was observed. I used ten-
fold cross validation. The experiments were performed with
different values of K but the best results were obtained using
K = 1. The same strategy was applied on the compressed
images obtained using SVD. As displayed in Figure 3, ac-
curacy with the proposed approach is always better than
that with SVD. Figure 4(a) compares the precisions, recall
and fstatic values of classification results obtained using the
proposed algorithm with those using SVD on ORL dataset.



Proposed algorithm clearly outperforms SVD on all counts.
Figure 4(b) displays the results with respect to the three
datasets we use in this paper.

Figure 3: ORL dataset. Classification accuracy as a
function of number of neighbors when classification
is carried out using K-Nearest Neighbor method
with 10-fold cross-validation.

Figure 4: d = 20. Precision, recall and fstatic values
for the classification results obtained using K-NN
(with K = 1) using ten fold cross validation and the
compressed images that were produced by the pro-
posed algorithm. (a) Proposed algorithm compared
to SVD on ORL dataset; (b) proposed algorithm on
each of the three datasets.

2.4 Reconstruction
Figure 5 displays the images of five subjects. The first row
is the original image. The second row shows the compressed
images obtained using the proposed approach. The third
row shows the images obtained using SVD. Clearly, the pro-
posed approach preserves much more visual quality than
SVD.

Figure 6 displays the images of three leaves, one of each
specie (there were three species in in this dataset). The
first row, again, has the original images while the second
row displays the corresponding compressed images. SVD’s
memory requirements exceeded the memory available on this
machine.

Figure 7 shows randomly picked (though, at least one of
kind) sample images from the Menu-Match dataset and the
compressed images obtained using the proposed algorithm.
We notice some blurring in some of the compressed images.
This blurring can be attributed to the zero-padding and huge

Figure 5: ORL dataset, d = 20. The original image
(top row), images compressed by the proposed ap-
proach (middle row) and the images compressed by
SVD (bottom row).

Figure 6: Leaves dataset, d = 20. The original image
(top row), images compressed by the proposed ap-
proach (second row). SVD ran out on memory for
this dataset on the computer being used.

amounts on image cropping that we did to ensure that all
the input images were of equal size. Better preparation of
input will reduce the blurring effect largely. Once again,
SVD failed to run for this dataset on our computer.

Figure 7: Menu-Match dataset, d = 20. The origi-
nal image (top row), images compressed by the pro-
posed approach (second row). SVD ran out on mem-
ory for this dataset on the computer being used.

3. DISCUSSION AND CONCLUSIONS



The most significant feature of the algorithm proposed in
[6] lies in it’s capability to process sequences of data while
still being able to avoid cumbersome, and frequently compu-
tationally intractable, data structures (eg., large matrices).
The design is based on sound mathematical derivation pre-
sented in the paper. The algorithm is indeed computation-
ally and spatially more efficient than other traditional algo-
rithms. The numerical experiments presented here demon-
strate that SVD becomes intractable as the size of datasets
increases but the proposed algorithm still runs in seconds.
Summarizing, the author’s claims are verified both on the
datasets he used and on the new datasets we experimented
with:

1. Data compression: The algorithm efficiently compresses
data and the compression obtained using the proposed
algorithm preserves the data quality much better than
SVD. Classification using this compressed data is still
accurate.

2. The algorithm is temporally more efficient than other
state-of-the-art-algorithms (of the time when the pa-
per was published), including SVD.

In general, the proposed algorithm outperforms SVD inevery
respect. Finally, although the experiments in this paper
were presented with respect to image processing application
only, the algorithm can actually be used for a large gamut
of applications.

Difficulties faced. The actual implementation of the algo-
rithm as well as the SVD went smooth for us. The pri-
mary difficulty that we faced in this project was obtaining
the datasets we wanted to work with. Our original idea
was to work with remote sensing images and medical im-
ages. However, we could not find freely available sufficiently
large datasets of these images and had to present our results
with the datasets we could find. Secondly, working with the
menu dataset was turned out to be more involved that we
had expected. The images in this dataset do not come in
an organized format (eg., organized by class labels). While
downloading the the image stack was trivial, arranging the
more than six hundred images required more work. To this
end, we wrote some bash scripts that downloaded the html
files from the website, parsed those to get the names of the
menu items and the respective cuisines, then collected the
names of the image files for each menu item, and finally cre-
ated three folders (‘asian’, ‘italian’, and ‘soup’) and put the
respective image files in the corresponding folders. Secondly,
while reading the image files into the code (matrix), the im-
ages turned out to be of random sizes. Fitting them into a
matrix in an educated way, both for the proposed framework
as well as for the SVD framework, took time. Apart from
these more successful experiments, a lot of our time went in
preparing the landsat imagery dataset we had been able to
download for this experiment. Unfortunately, we could not
get those ready to be used for the code and had to settle
with the smaller datasets presented in this paper.

3.1 Future Work

The proposed algorithm is indeed very promising in every
way. However, although it has achieved much scalability and
space efficiency, both these aspects can be further improved
upon. Improving the running time and memory require-
ments further is one potential area of future work in this
context.

Satellite imagery (or, remote sensing data), that we had
originally wished to experiment with, is characterized by
large chunks of missing data. In other words, the data is
sparse. In addition, remote sensing datasets are also very
large (order of terabytes and growing exponentially). These
datasets, in particular, can benefit immensely from scalable
image processing algorithms, and thus, present a powerful
avenue to implement/demostrate the algorithm on. Doing
so will be a grat test for the algorithm and also a great
avenue to further develop the algorithm for large, sparse,
multidimensional datasets.

Another arena that is overwhelmed with large, multidimen-
sional image is medical imaging.

In general, we wish to advance the algorithm for scalable
(and parallel) computing. Parallel implementation will alle-
viate the intractability of SVD. Additionally, while the pre-
sented algorithm relies only on eigenvectors, it would be
interesting to replace/complemet the use of linear algebra
with ideas from robust statistics. This is our longer term
goal.

4. AUTHOR CONTRIBUTIONS
I did the project by myself. So all the implementation and
writing was done by me.

5. REFERENCES
[1] J. P. Boyle, and R. L. Dykstra, A method for finding

projections onto the intersection of convex sets in
Hilbert space, Lecture Notes in Statistics, Vol. 37, pp
28 – 47, 1986.

[2] M. Gu, and S. C. Eisenstat, A fast and stable
algorithm for updating the singular value
decomposition, Technical Report Technical Report
YALEU/DCS/RR-966, Department of Computer
Science, Yale University, 1993.

[3] K. V. R. Kanth, D. Agrawal, A. E. Abbadi, and A.
Singh, Dimensionality reduction for similarity
searching in dynamic databases, CM SIGMOD
Conference Proceedings, 166 – 176, 1998.

[4] D. P. O’Leary, and B. W. Rust, Variable Projection
for Nonlinear Least Squares Problems, Computational
Optimization and Applications, Vol. 54, No. 3, pp 579
– 593, 2013.

[5] M. W. Mahoney, and P. Drineas, CUR matrix
decompositions for improved data analysis,
Proceedings of the National Academy of Sciences of
the United States of America, Vol. 106, No. 3, pp 1 –
3, 2008.

[6] J. Ye, Generalized Low Rank Approximations of
Matrices, Machine Learning, Vol. 61, No. 1 – 3, 2005.


