
LULC-Net: Generalized convolution neural network classfier

for detecting land use changes from satellite data

Rishu Saxena

Convolution neural networks (CNNs) have recently been applied in a wide variety of
complex, previously intractable, tasks such as image recognition and semantic labeling. This
report presents preliminary findings on a novel application of CNN — classifying locations
on Earth’s surface as those with change or no change (stable) using images obtained from
satellite data. Land use change is described as changes in how humans use the surface
of the Earth (e.g., for agriculture, plantations, pastures, managed woods, conservation,
settlements, or leaving it alone as natural ecosystem). Changes in land use lead to changes
in albedo, thereby directly affecting the temperatures of the surrounding area. Significant
and lasting changes in land use and land cover (LULC) have more profound effects. The
past century has seen an exponential growth in human activities such as deforestation and
urbanization causing significant changes in land cover in several parts of the world [?].
Simultaneously, significant changes in the global climate have also been observed, driven in
part by LULC change (LULCC) (e.g., [?]). LULCC also has impacts on a wide variety of
other ecosystem services. Monitoring LULCC across the globe, therefore, has become the
need du jour. Land use change detection comprises any methodology used for determining
the occurance and nature of change in LULC.

Earth observation satellites (EOS) such as Landsat capture images of the Earth’s sur-
face at regular intervals using multiple spectral frequencies (Figure ??(a)). These images
hold valuable information that, if harnessed well, can be immensely helpful in understand-
ing, monitoring, and managing our natural resources, as well as studying LULCC. An
excellent way of analyzing these satellite images for LULCC studies is time series analysis
(or, temporal trajectory analysis). For time series analysis, several images of the scene
under consideration, taken over a period of time, are stacked together chronologically, and
are subsequently analyzed (see figure ??(b)). Commonly, the time series for each pixel
is treated individually; the full image stack is thus a collection of many time series. The
choice of spectral band(s) varies from application to application. The objective is to dis-
cover a ‘trend’ in how different relevant variables (indicators) evolve over time. Analysis is
based on the behaviours of the time series of these variables. In change detection analysis,
when the trajectory of one or more of the variables departs from the normal, a change is
detected. Time series analysis for LULCC studies has been receiving increasing attention
in the last decade, specifically, after the Landsat data became freely accessible in 2008 [?].
Several time series analysis algorithms have been proposed by different groups in the remote
sensing community.

Despite a plethora of time series analysis algorithms available in remote sensing, design
and selection of algorithms for LULCC detection in remote sensing appears to be almost
always context specific. Most of the methods proposed to date seem to perform well on the
type of data that they are designed for. Their performance on randomly picked datasets

1



(a) (b)

Figure 1: (a) Earth observation satellites take images of the Earth’s surface in patches at
regular interval (Source: https://www.nasa.gov/). (b) In TSA for LULCC, satellite images
are stacked chronologically. The image stack yields a time series per pixel.

(a) before change (b) after change

Figure 2: Image of patch pre and post change.

from across the globe has not been studied. The onus of choosing an appropriate algorithm
that will perform well on their particular dataset falls on the user. Unfortunately, no single
algorithm designed so far seems to work for all datasets [?]. For example, the Western
Antarctica as well as the Greenland Ice Sheets are beginning to collapse due to global
warming, the melting leading to continually receding snow covers at the respective locations.
For these regions, using LULC algorithms based on periodicity assumptions is expected to
lead to incorrect predictions and/or false alarms, although the nature and extent of this
has not been studied yet. Even if there were no global warming, mild shifts in the ‘phase’
and ‘amplitude’ of seasons are known to take place [?]. Time warping techniques [?] to
deal with these issues may be helpful in some contexts, but their accuracy and scalability
has not yet been satisfactorily investigated. Approaches based on periodicity and a moving
window are possible, with additional computational costs.

This work explores the use of CNNs for LULCC. One of the key issues in using neural
networks for LULCC via LandSat imagery is the lack of training data. Specifically, a ground
truth/historical records dataset that provides information on the occurrance (timing and
type) of change for any given location on the surface of the Earth (pixels, in LandSat
image stacks) does not exist. The Landsat images themselves have significant level of noise,

2



missing data (for example, due to clouds), and incorrect and/or missing data (usually due
to sensor malfunction). Such image quality, combined with the fact that remote sensing is
still a niche field of study, makes it significantly challenging to build annotated datasets that
can be used to train CNN (any change classifier, in general). This is in contrast with other
major datasets/problems, such as object recognition and semantic labeling, where neural
networks have been successfully used in state-of-the-art literature. To our knowledge, in
most of these cases, high quality annotated images (datasets) are available on the internet
(social media, Flickr, and the like). Researchers are able to build vast repositories of
semantically annotated images which are then used to train the CNN.

Designing the neural network approach, validation, and scalability are the subsequent
issues to be addressed.

In this work, a polyalgorithmic approach is used to classify 4000 NDVI time series as
stable or unstable. A canonical CNN consisting of three convolutional layers and 3 fully
connected layers is the used for classifying 10000 time series as those with change or no
change (stable).

The rest of this paper is organized as follows: Section 2 presents background on state-
of-the-art change detection algorithms available in remote sensing. Section 3 presents the
proposed neural networks based approach: training data generation, neural networks model,
and the results. Conclusions and future work are presented in Section 4.

1 Generating Training data for CNN using Polyalgorithm
and Timesync data

A polyalgorithm consisting of three component algorithms is for labeling 4000 pixels as
’stable’ or those with ’change’. The component algorithms, viz., EWMACD, LandTrendR,
and BFAST, are fundamentally unique to each other by constructions, and to some extent,
in the phenomenon they capture. These algorithms were originally meant to identify the
timing of change occurrence(s) in the input time series. However, in the present context,
we only use them to determine whether a pixel had any change at all. Of these algorithms,
BFAST is most exhaustive in its breakpoint search. We briefly discuss BFAST algorithm
next.

Breaks For Additive and Seasonal Trend. Amongst the state-of-the-art LULCC
detection algorithms in remote sensing, BFAST [?] is found to be most thorough and accu-
rate in assessing change. This is a recuresive residual based algorithm that considers every
single timepoint in the time series as a candidate breakpoint, computes the least squares
residuals for fits on either side of that timepoint, and eventually selects the timepoints that
yield lowest loeast squares residuals as the breakpoints. Specifically, BFAST decomposes
the given time series iteratively into three components: trend, seasonal, and noise. BFAST
computes and evaluates least squares fits in windows of increasing size. Qualitatively, (i)
first the possibility of there being any structural change in the given time series is determined
by computing the partial sums of residuals of least squares fits in windows (OLS-MOSUM).
The limiting process of these partial sums is the increments of a Brownian bridge process
[?]. If the observations do have a structural change, an ordinary linear least squares fit
will result in large residuals and, hence, in large partial sums. Therefore, the occurence of
large values in the process is an indication of the presence of a structural change — this
probability being calculated from the Brownian bridge table. (ii) If a structural change is

3



(a) Harvest to Forest change (b) Fire in non-forest vegetation

Figure 3: Figure illustrates result of BFAST algorithm on two patches that underwent land
cover change.

indicated, a search for change location is done. Each interior time point t is considered a
breakpoint (change location) candidate. A recursive residual is the error at time tj from the
linear least squares fit over the window [ti, . . . , tj−1]. The breakpoints (change locations)
are chosen so as to minimize the sum of squared recursive residuals over all windows in
between (omitting) the breakpoints. This is done for both trend and seasonal components
of the time series, consecutively. A formal pseudocode for BFAST is presented in [?].

Timesync data. The state-of-the-art information on LULCC for a select set of pix-
els is provided by the TimeSync dataset [?]. This dataset was prepared using TimeSync
Landsat time series visualization and change data collection tool [?]. This tool enables
disturbance characterizations for pixel-level samples of Landsat time series data, relying on
human interpretations of change as viewed in image chip series, spectral index trajectories,
high spatial resolution image temporal snapshots from Google Earth, and other support-
ing products. Landsat image stacks spanning the years 1984 to 2014 and belonging to six
different path/rows (scenes) are considered for preparing TimeSync dataset. From each
scene, 300 pixels are chosen with random sampling, and without regard to land cover. Thus
there are 1800 pixels in all included in the dataset. For each of these pixels, the following
attributes are noted: occurence of disturbance, the first year of detection (a year between
1986 and 2011), the duration for gradual disturbances (in number of years), and the causal
agent class (harvest, fire, mechanical, decline, wind, other). Of the 1800 pixels, 1303 pixels
were forested at some point within the 26 year time period. The work presented in this
article utilizes the time series of the pixels included in TimeSync data and the corresponding
disturbance occurence information. The results presented are limited to the time period
2000–2012. Despite the tedious, conscentious efforts that TimeSync dataset has been pre-
pared with, disagreement is sometimes found between the NDVI trajectory of a pixel and
the Timesync change information.

2 LULC-Net: A neural network for land use change detec-
tion

We utilize a generic convolutional neural network (CNN) for our problem. Our network
consists of five layers — first three convolutional, and next two fully connected.

For the convolutional layers, 32 filters each are used for the first two layers, 64 for the
third layer. The convolution kernel has a receptive field of size 3 × 3. A stride of one pixel

4



(a) Harvest to Forest change (b) Fire in non-forest vegetation

Figure 4: Figure illustrates result of BFAST algorithm on two patches that underwent land
cover change.

Table 1: Runtime Configuration

software version
GCC 5.2

CUDA 8.0.61
ATLAS 3.0.12
Python 2.7.13
PyCuda 2016.1.2
Theano 0.8.2

libgpuarray 3.0
PyGPU 0.7.5

is used. ‘ReLu’ (Rectified Linear Units) is used as the activation function. ReLu is defined
as

f(x) = max(0, x),

where x is the input to the neuron. Networks that train with ReLu activation allow efficient
gradient propagation (no vanishing or exploding gradients) and efficient computation (only
comparison, addition, and multiplication). ReLu based networks are several times faster
than networks with other commonly used activation functions. Each activation is followed
by a max-pooling layer. Overlapping pooling is used, with neighborhoods of size 2× 2, and
the centers of the neighborhoods 1 pixels apart.

The (pooled) output of the third layer is flattened out, and
Dropout is a technique used to prevent overfitting and co-adaptations of neurons by

setting the output of any neuron to zero with probability p.
Keep a moving average of the squared gradient for each weight
Data augmentation and Dropout are used to reduce overfitting.
Figure 1 diplays two sample images from the training data.

2.1 Implementation in Keras

Header

import matplotlib

matplotlib.use("Agg")

5



import matplotlib.pyplot as plt

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense

from keras import backend as K

import numpy as np

Initialization

img_width, img_height = 204, 153

train_data_dir = ’rs_data/train/’

validation_data_dir = ’rs_data/validation’

test_data_dir = ’rs_data/test’

nb_train_samples = 100

nb_validation_samples = 50

epochs = 3

batch_size =1

K.set_image_data_format(’channels_first’)

input_shape = (3, img_width, img_height)

The Model

model = Sequential()

model.add(Conv2D(32, (3, 3), input_shape=input_shape))

convout_l1_act = Activation(’relu’)

model.add(convout_l1_act)

convout_l1_mp = MaxPooling2D() #(pool_size=(2, 2))

model.add(convout_l1_mp)

model.add(Conv2D(32, (3, 3)))

convout_l2_act = Activation(’relu’)

model.add(convout_l2_act)

convout_l2_mp = MaxPooling2D()

model.add(convout_l2_mp) #MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))

convout_l3_act = Activation(’relu’)

model.add(convout_l3_act)

convout_l3_mp = MaxPooling2D() #pool_size=(2,2)

model.add(convout_l3_mp)

model.add(Flatten())

model.add(Dense(64))

model.add(Activation(’relu’))

model.add(Dropout(0.5))

6



model.add(Dense(1))

model.add(Activation(’sigmoid’))

model.compile(loss=’binary_crossentropy’,

optimizer=’rmsprop’, metrics=[’accuracy’])

model.summary()

Training and Validation

train_datagen = ImageDataGenerator(rescale=1./255, \

shear_range=0.2,zoom_range=0.2, horizontal_flip=False)

test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(train_data_dir,

target_size=(img_width, img_height),

batch_size=batch_size, shuffle=False, class_mode=’binary’)

validation_generator = test_datagen.flow_from_directory(validation_data_dir,

target_size=(img_width, img_height), batch_size=batch_size, class_mode=’binary’)

model.fit_generator(train_generator,

steps_per_epoch=nb_train_samples // batch_size,

epochs=epochs, validation_data=validation_generator,

validation_steps=nb_validation_samples // batch_size)

Testing

test_generator = test_datagen.flow_from_directory(

test_data_dir,

target_size=(img_width, img_height),

batch_size=batch_size,

class_mode=None, # only data, no labels

shuffle=False) # keep data in same order as labels

probabilities = model.predict_generator(test_generator, 500)

#print probabilities

from sklearn.metrics import confusion_matrix

import numpy as np

from sklearn.metrics import classification_report

y_true = np.array([0] * 70 + [1] * 70)

y_pred = probabilities > 0.5

print(classification_report(y_true, y_pred))

tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()

print tn, fp

print fn, tp

7



2.2 Visual interpretation of the generated model

8



9



10


